Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.370
Filtrar
1.
Rev. med. cine ; 19(4): 303-316, 11/14/2023. ilus
Artigo em Espanhol | IBECS | ID: ibc-227599

RESUMO

Si bien la hemofilia era conocida como una enfermedad que perturbaba solo a las familias reales de Europa, actualmente afecta a uno de cada 5.000 y a uno de cada 30.000 varones recién nacidos vivos tanto para la de Tipo A como B, respectivamente. La hemofilia es un trastorno de la coagulación sanguínea que afecta principalmente a varones por su carácter de herencia recesiva ligada al X, siendo su manifestación principal las hemorragias que pueden llegar a ser mortales si no son tratadas correctamente. En Bombardier Blood (2020) de Patrick James Lynch, un documental enfocado al recorrido de Chris Bombardier, una persona hemofílica cuyo sueño es escalar las siete cumbres más altas del mundo, incluyendo en su paso el monte Everest en el Himalaya. El documental además de destacar los aspectos médicos sobre esta enfermedad hace ver los diferentes estilos de vida de acuerdo a su localización, las normativas y sistemas de salud que los rige y como esto incide en el diagnóstico, seguimiento y tratamiento. (AU)


While hemophilia was considered a disease that disturbed only the royal families of Europe, it currently affects one in 5.000 and one in 30.000 live newborn males for both Type A and B, respectively. Hemophilia is a blood clotting disorder that mainly affects men due to its character of recessive inheritance linked to X, its main manifestation hemorrhaging that can become fatal if they are not treated correctly. Bombardier Blood (2020) by Patrick James Lynch is a documentary focused on the journey of Chris Bombardier, a hemophilic person whose dream is to climb the seven highest summits in the world, including Mount Everest in the Himalayas. The documentary, in addition to highlighting the medical aspects of this disease, shows the different lifestyles according to their location, the regulations and health systems that govern them, and how these affect diagnosis, monitoring, and treatment. (AU)


Assuntos
Humanos , Hemofilia A/diagnóstico , Hemofilia A/terapia , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/psicologia , Doenças Genéticas Inatas/terapia , Transtornos Herdados da Coagulação Sanguínea/diagnóstico , Transtornos Herdados da Coagulação Sanguínea/terapia , Hereditariedade , Nepal
2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047074

RESUMO

Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.


Assuntos
Códon sem Sentido , Doenças Genéticas Inatas , Elongação Traducional da Cadeia Peptídica , Medicina de Precisão , Doenças Raras , Supressão Genética , Animais , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Códon sem Sentido/genética , Fibrose Cística/genética , Fibrose Cística/terapia , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/terapia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Nefrite Hereditária/genética , Nefrite Hereditária/terapia , Degradação do RNAm Mediada por Códon sem Sentido , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Doenças Raras/genética , Doenças Raras/terapia , Retinite Pigmentosa/genética , Retinite Pigmentosa/terapia , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/terapia , Supressão Genética/efeitos dos fármacos , Supressão Genética/genética , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Aminoglicosídeos/farmacologia
3.
Cell ; 186(7): 1302-1304, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001495

RESUMO

CRISPR-Cas9-based base editing allows precise base editing to achieve conversion of adenosine to guanine or cytosine to thymidine. In this issue of Cell, McAuley et al. use adenine base editing to correct a single base-pair mutation causing human CD3δ deficiency, demonstrating superior efficiency of genetic correction with reduced undesired genetic alterations compared with standard CRISPR-Cas9 editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Doenças do Sistema Imunitário , Humanos , Adenina , Sistemas CRISPR-Cas/genética , Terapia Genética , Mutação , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/terapia
4.
Singapore Med J ; 64(1): 7-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722512

RESUMO

There are more than 7,000 paediatric genetic diseases (PGDs) but less than 5% have treatment options. Treatment strategies targeting different levels of the biological process of the disease have led to optimal health outcomes in a subset of patients with PGDs, where treatment is available. In the past 3 decades, there has been rapid advancement in the development of novel therapies, including gene therapy, for many PGDs. The therapeutic success of treatment relies heavily on knowledge of the genetic basis and the disease mechanism. Specifically, gene therapy has been shown to be effective in various clinical trials, and indeed, these trials have led to regulatory approvals, paving the way for gene therapies for other types of PGDs. In this review, we provide an overview of the treatment strategies and focus on some of the recent advancements in therapeutics for PGDs.


Assuntos
Doenças Genéticas Inatas , Criança , Humanos , Doenças Genéticas Inatas/terapia , Terapia Genética
6.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-969660

RESUMO

There are more than 7,000 paediatric genetic diseases (PGDs) but less than 5% have treatment options. Treatment strategies targeting different levels of the biological process of the disease have led to optimal health outcomes in a subset of patients with PGDs, where treatment is available. In the past 3 decades, there has been rapid advancement in the development of novel therapies, including gene therapy, for many PGDs. The therapeutic success of treatment relies heavily on knowledge of the genetic basis and the disease mechanism. Specifically, gene therapy has been shown to be effective in various clinical trials, and indeed, these trials have led to regulatory approvals, paving the way for gene therapies for other types of PGDs. In this review, we provide an overview of the treatment strategies and focus on some of the recent advancements in therapeutics for PGDs.


Assuntos
Criança , Humanos , Doenças Genéticas Inatas/terapia , Terapia Genética
8.
Nature ; 604(7905): 343-348, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35322228

RESUMO

Gene therapy is a potentially curative medicine for many currently untreatable diseases, and recombinant adeno-associated virus (rAAV) is the most successful gene delivery vehicle for in vivo applications1-3. However, rAAV-based gene therapy suffers from several limitations, such as constrained DNA cargo size and toxicities caused by non-physiological expression of a transgene4-6. Here we show that rAAV delivery of a suppressor tRNA (rAAV.sup-tRNA) safely and efficiently rescued a genetic disease in a mouse model carrying a nonsense mutation, and effects lasted for more than 6 months after a single treatment. Mechanistically, this was achieved through a synergistic effect of premature stop codon readthrough and inhibition of nonsense-mediated mRNA decay. rAAV.sup-tRNA had a limited effect on global readthrough at normal stop codons and did not perturb endogenous tRNA homeostasis, as determined by ribosome profiling and tRNA sequencing, respectively. By optimizing the AAV capsid and the route of administration, therapeutic efficacy in various target tissues was achieved, including liver, heart, skeletal muscle and brain. This study demonstrates the feasibility of developing a toolbox of AAV-delivered nonsense suppressor tRNAs operating on premature termination codons (AAV-NoSTOP) to rescue pathogenic nonsense mutations and restore gene function under endogenous regulation. As nonsense mutations account for 11% of pathogenic mutations, AAV-NoSTOP can benefit a large number of patients. AAV-NoSTOP obviates the need to deliver a full-length protein-coding gene that may exceed the rAAV packaging limit, elicit adverse immune responses or cause transgene-related toxicities. It therefore represents a valuable addition to gene therapeutics.


Assuntos
Códon sem Sentido , Dependovirus , Terapia Genética , Adenoviridae , Animais , Códon sem Sentido/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Dependovirus/genética , Doenças Genéticas Inatas/terapia , Vetores Genéticos , Humanos , Camundongos , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo
9.
Life Sci ; 294: 120375, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123997

RESUMO

Gene therapy is the product of man's quest to eliminate diseases. Gene therapy has three facets namely, gene silencing using siRNA, shRNA and miRNA, gene replacement where the desired gene in the form of plasmids and viral vectors, are directly administered and finally gene editing based therapy where mutations are modified using specific nucleases such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short tandem repeats (CRISPR)/CRISPR-associated protein (Cas)-associated nucleases. Transfer of gene is either through transformation where under specific conditions the gene is directly taken up by the bacterial cells, transduction where a bacteriophage is used to transfer the genetic material and lastly transfection that involves forceful delivery of gene using either viral or non-viral vectors. The non-viral transfection methods are subdivided into physical, chemical and biological. The physical methods include electroporation, biolistic, microinjection, laser, elevated temperature, ultrasound and hydrodynamic gene transfer. The chemical methods utilize calcium- phosphate, DAE-dextran, liposomes and nanoparticles for transfection. The biological methods are increasingly using viruses for gene transfer, these viruses could either integrate within the genome of the host cell conferring a stable gene expression, whereas few other non-integrating viruses are episomal and their expression is diluted proportional to the cell division. So far, gene therapy has been wielded in a plethora of diseases. However, coherent and innocuous delivery of genes is among the major hurdles in the use of this promising therapy. Hence this review aims to highlight the current options available for gene transfer along with the advantages and limitations of every method.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Transferência de Genes , Doenças Genéticas Inatas/terapia , Terapia Genética , Vetores Genéticos/uso terapêutico , Doenças Genéticas Inatas/genética , Humanos
10.
AAPS J ; 24(1): 31, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102450

RESUMO

Given the recent success of gene therapy modalities and the growing number of cell and gene-based therapies in clinical development across many different therapeutic areas, it is evident that this evolving field holds great promise for the unmet medical needs of patients. The recent approvals of Luxturna® and Zolgensma® prove that recombinant adeno-associated virus (rAAV)-based gene therapy is a transformative modality that enables curative treatment for genetic disorders. Over the last decade, Takeda has accumulated significant experience with rAAV-based gene therapies, especially in the early stage of development. In this review, based on the learnings from Takeda and publicly available information, we aim to provide a guiding perspective on Drug Metabolism and Pharmacokinetics (DMPK) substantial role in advancing therapeutic gene therapy modalities from nonclinical research to clinical development, in particular the characterization of gene therapy product biodistribution, elimination (shedding), immunogenicity assessment, multiple platform bioanalytical assays, and first-in-human (FIH) dose projection strategies. Graphical abstract.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Animais , Produtos Biológicos , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Humanos , Proteínas Recombinantes de Fusão/genética
11.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054919

RESUMO

Inherited retinal diseases (IRDs) are a leading cause of blindness. To date, 260 disease-causing genes have been identified, but there is currently a lack of available and effective treatment options. Cone photoreceptors are responsible for daylight vision but are highly susceptible to disease progression, the loss of cone-mediated vision having the highest impact on the quality of life of IRD patients. Cone degeneration can occur either directly via mutations in cone-specific genes (primary cone death), or indirectly via the primary degeneration of rods followed by subsequent degeneration of cones (secondary cone death). How cones degenerate as a result of pathological mutations remains unclear, hindering the development of effective therapies for IRDs. This review aims to highlight similarities and differences between primary and secondary cone cell death in inherited retinal diseases in order to better define cone death mechanisms and further identify potential treatment options.


Assuntos
Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Predisposição Genética para Doença , Células Fotorreceptoras Retinianas Cones/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Animais , Apoptose/genética , Autofagia/genética , Biomarcadores , Morte Celular , Estresse do Retículo Endoplasmático , Estudos de Associação Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/terapia , Humanos , Estresse Oxidativo , Doenças Retinianas/diagnóstico , Doenças Retinianas/terapia , Transdução de Sinais
12.
N Engl J Med ; 385(24): 2264-2270, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34881838

RESUMO

Inherited junctional epidermolysis bullosa is a severe genetic skin disease that leads to epidermal loss caused by structural and mechanical fragility of the integuments. There is no established cure for junctional epidermolysis bullosa. We previously reported that genetically corrected autologous epidermal cultures regenerated almost an entire, fully functional epidermis on a child who had a devastating form of junctional epidermolysis bullosa. We now report long-term clinical outcomes in this patient. (Funded by POR FESR 2014-2020 - Regione Emilia-Romagna and others.).


Assuntos
Epiderme/transplante , Epidermólise Bolhosa Juncional/terapia , Queratinócitos/transplante , Transdução Genética , Transgenes , Autorrenovação Celular , Células Cultivadas/transplante , Criança , Células Clonais , Epiderme/patologia , Epidermólise Bolhosa Juncional/genética , Epidermólise Bolhosa Juncional/patologia , Seguimentos , Doenças Genéticas Inatas/patologia , Doenças Genéticas Inatas/terapia , Terapia Genética , Vetores Genéticos , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Masculino , Regeneração , Células-Tronco/fisiologia , Transplante Autólogo
13.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948153

RESUMO

Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.


Assuntos
Doenças Genéticas Inatas , Modelos Genéticos , Doenças Raras , Peixe-Zebra , Animais , Pesquisa Biomédica , Modelos Animais de Doenças , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/terapia , Humanos , Doenças Raras/genética , Doenças Raras/metabolismo , Doenças Raras/terapia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
Acc Chem Res ; 54(23): 4283-4293, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34793124

RESUMO

After decades of extensive fundamental studies and clinical trials, lipid nanoparticles (LNPs) have demonstrated effective mRNA delivery such as the Moderna and Pfizer-BioNTech vaccines fighting against COVID-19. Moreover, researchers and clinicians have been investigating mRNA therapeutics for a variety of therapeutic indications including protein replacement therapy, genome editing, and cancer immunotherapy. To realize these therapeutics in the clinic, there are many formidable challenges. First, novel delivery systems such as LNPs with high delivery efficiency and low toxicity need to be developed for different cell types. Second, mRNA molecules need to be engineered for improved pharmaceutical properties. Lastly, the LNP-mRNA nanoparticle formulations need to match their therapeutic applications.In this Account, we summarize our recent advances in the design and development of various classes of lipids and lipid derivatives, which can be formulated with multiple types of mRNA molecules to treat diverse diseases. For example, we conceived a series of ionizable lipid-like molecules based on the structures of a benzene core, an amide linker, and hydrophobic tails. We identified N1,N3,N5-tris(3-(didodecylamino)propyl)benzene-1,3,5-tricarboxamide (TT3) as a lead compound for mRNA delivery both in vitro and in vivo. Moreover, we tuned the biodegradability of these lipid-like molecules by introducing branched ester or linear ester chains. Meanwhile, inspired by biomimetic compounds, we synthesized vitamin-derived lipids, chemotherapeutic conjugated lipids, phospholipids, and glycolipids. These scaffolds greatly broaden the chemical space of ionizable lipids for mRNA delivery. In another section, we highlight our efforts on the research direction of mRNA engineering. We previously optimized mRNA chemistry using chemically-modified nucleotides to increase the protein expression, such as pseudouridine (ψ), 5-methoxyuridine (5moU), and N1-methylpseudouridine (me1ψ). Also, we engineered the sequences of mRNA 5' untranslated regions (5'-UTRs) and 3' untranslated regions (3'-UTRs), which dramatically enhanced protein expression. With the progress of LNP development and mRNA engineering, we consolidate these technologies and apply them to treat diseases such as genetic disorders, infectious diseases, and cancers. For instance, TT3 and its analog-derived lipid-like nanoparticles can effectively deliver factor IX or VIII mRNA and recover the clotting activity in hemophilia mouse models. Engineered mRNAs encoding SARS-CoV-2 antigens serve well as vaccine candidates against COVID-19. Vitamin-derived lipid nanoparticles loaded with antimicrobial peptide-cathepsin B mRNA enable adoptive macrophage transfer to treat multidrug resistant bacterial sepsis. Biomimetic lipids such as phospholipids formulated with mRNAs encoding costimulatory receptors lead to enhanced cancer immunotherapy.Overall, lipid-mRNA nanoparticle formulations have considerably benefited public health in the COVID-19 pandemic. To expand their applications in clinical use, research work from many disciplines such as chemistry, engineering, materials, pharmaceutical sciences, and medicine need to be integrated. With these collaborative efforts, we believe that more and more lipid-mRNA nanoparticle formulations will enter the clinic in the near future and benefit human health.


Assuntos
Portadores de Fármacos/química , Lipossomos/química , Nanopartículas/química , RNA Mensageiro/química , Animais , Benzamidas/química , Materiais Biomiméticos/química , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/terapia , Modelos Animais de Doenças , Doenças Genéticas Inatas/imunologia , Doenças Genéticas Inatas/terapia , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Fosfolipídeos/química , RNA Mensageiro/metabolismo , RNA Mensageiro/uso terapêutico , Regiões não Traduzidas , Vitaminas/química
15.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769359

RESUMO

Nonsense mutations are the result of single nucleotide substitutions in the DNA that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of the mRNA [...].


Assuntos
Códon sem Sentido , Doenças Genéticas Inatas/terapia , Mutação , Degradação do RNAm Mediada por Códon sem Sentido , Biossíntese de Proteínas , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Humanos
16.
Mol Ther ; 29(11): 3140-3152, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34601132

RESUMO

Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.


Assuntos
Sistemas CRISPR-Cas , Modelos Animais de Doenças , Edição de Genes , Terapia Genética , Animais , Estudos Clínicos como Assunto , Técnicas de Transferência de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Terapia Genética/métodos , Terapia Genética/tendências , Vetores Genéticos/genética , Humanos
18.
Mol Ther ; 29(11): 3107-3124, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34509669

RESUMO

Recent advances in genome editing technologies have magnified the prospect of single-dose cures for many genetic diseases. For most genetic disorders, precise DNA correction is anticipated to best treat patients. To install desired DNA changes with high precision, our laboratory developed base editors (BEs), which can correct the four most common single-base substitutions, and prime editors, which can install any substitution, insertion, and/or deletion over a stretch of dozens of base pairs. Compared to nuclease-dependent editing approaches that involve double-strand DNA breaks (DSBs) and often result in a large percentage of uncontrolled editing outcomes, such as mixtures of insertions and deletions (indels), larger deletions, and chromosomal rearrangements, base editors and prime editors often offer greater efficiency with fewer byproducts in slowly dividing or non-dividing cells, such as those that make up most of the cells in adult animals. Both viral and non-viral in vivo delivery methods have now been used to deliver base editors and prime editors in animal models, establishing that base editors and prime editors can serve as effective agents for in vivo therapeutic genome editing in animals. This review summarizes examples of in vivo somatic cell (post-natal) base editing and prime editing and prospects for future development.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética/métodos , Animais , Proteína 9 Associada à CRISPR/metabolismo , Quebras de DNA de Cadeia Dupla , Edição de Genes/métodos , Rearranjo Gênico , Técnicas de Transferência de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Vetores Genéticos/genética , Humanos , Mutação INDEL , RNA Guia de Cinetoplastídeos
20.
J Clin Immunol ; 41(8): 1774-1780, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34387798

RESUMO

Predisposition to mycobacterial infection is a key presenting feature of several rare inborn errors of intrinsic and innate immunity. Hematopoietic stem cell transplantation (HSCT) can be curative for such conditions, but published reports are few. We present a retrospective survey of the outcome of 11 affected patients (7 males, 4 females) who underwent HSCT between 2007 and 2019. Eight patients had disseminated mycobacterial infection prior to transplant. Median age at first transplant was 48 months (9 -192); three patients were successfully re-transplanted due to secondary graft failure. Donors were matched family (1), matched unrelated (3), and mismatched unrelated and haploidentical family (5 each). Stem cell source was peripheral blood (9), bone marrow (4), and cord blood (1). TCRαß/CD19 + depletion was performed in 6. Conditioning regimens were treosulfan, fludarabine (4), with additional thiotepa (in 8), and fludarabine, melphalan (2); all had serotherapy with alemtuzumab (8) or anti T-lymphocyte globulin (6). Median hospital stay was 113 days (36-330). Three patients developed acute grade I-II skin and one grade IV skin graft versus host disease. Four patients had immune-reconstitution syndrome. Two reactivated cytomegalovirus (CMV), 1 Epstein-Barr virus, and 3 adenovirus post HSCT. Nine are alive, 1 died early post-transplant from CMV, and the other was a late death from pneumococcal sepsis. Patients with active mycobacterial infection at HSCT continued anti-mycobacterial therapy for almost 12 months. In conclusion, HSCT is a successful treatment for patients with mycobacterial susceptibility even with disseminated mycobacterial infection and in the absence of an HLA matched donor.


Assuntos
Doenças Genéticas Inatas/terapia , Transplante de Células-Tronco Hematopoéticas , Infecções por Mycobacterium/terapia , Adolescente , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Feminino , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Doença Enxerto-Hospedeiro , Humanos , Lactente , Masculino , Infecções por Mycobacterium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...